【プレスリリース】気象データを生成するAIを開発

Press release2023-03-23

既定の気象観測地点から離れた場所でも 100mメッシュ以上の高精度でシミュレーションが可能なAIモデルを開発

株式会社Recursive(本社:東京都渋谷区 代表取締役:ティアゴ・ラマル、以下「リカーシブ」)は、過去の気象データを分析し、日本国内の任意の地点において降水量や気温、日射量などの気象情報を生成するBorealis(以下、ボレアリス)を開発し、企業や自治体などへの提供を開始しました。

ボレアリスは、各種衛星データ、アメダスなどの気象データとトポグラフィをベースとして開発され、過去20年分の気象観測地点の情報分析から日本国内における任意の場所の気象情報をシミュレーションするシステムです。日本国内の気象観測地点は限られた場所に設定されていることから、気象観測地点から離れた場所において細密な気象データを得るために、マンパワーや時間、コストをかけて調査することが一般的な手法として用いられてきました。ボレアリスは高精度*のデータをAIが生成することにより、工数などの問題を迅速に解決し、企業や自治体などの迅速な意思決定をサポートします。

活用事例として、特定地点の日照量や風向き、降雨量が年間を通じて高精度でシミュレーションできることから、大規模な太陽光発電や風力発電だけでなく、規模が小さい再生エネルギーの用地選定においても簡便に発電量の算出が可能となります。その他、自然災害に対するハザードマップ作成や農地計画、地方都市の開発など気象が関係する用地選定に幅広く応用が可能です。

リカーシブでは持続可能な社会のためにAIモデルの開発を手がけておりますが、今回開発したボレアリスを通じ、クリーンエネルギーの促進や災害対策、地方創生など多義にわたって社会に対してより大きな貢献していきます。

*精度について:ボレアリスの誤差について 2019年からの気象庁のデータを元に生産エネルギー量を算出し、これをボレアリス(AI)から算出したデータとAIを使用せずに算出したデータを比較。実際のデータと誤差を比較したところ、AIを使用しなかった場合と比較してボレアリスは59%の誤差を減少させる結果となりました。

■技術構造

■価格/システム導入について システムの仕様によって異なります。

共有
PDFのスクリーンショット5枚

Document download

当社の技術概要、ベンチマーク、事例紹介、業界別のユースケース例などをまとめた1つの資料で、当社のサービスを迅速に把握できます。